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Abstract. We consider the resummation of the semiclassical Selberg zeta function for 
quantized maps on compact phase space, specifically the quantized Baker’s map. In panicular. 
we demonstrate that the semiclassical periodic-orbit expansion leads to an effectively finite 
polynominal for lhe spectrum of the quantum map However, the coefficients are not self- 
inverse (as required by unitarity). An extension of the semiclassical approximalion by including 
corrections due U, the discontinuities of the classical map improves the situation. The improved 
polynominal is closer to being self-inverse but the eigenphases remain complex, Slightly better 
results are obtained if the functional equation is imposed on the semiclassical expansion. 

1. Introduction 

Several lines of thought have been followed in the quest for semiclassical quantization of 
chaotic systems. The Gutzwiller trace formula [1,2] combined with the cycle expansion 
[3,4] to eliminate convergence problems has met with some success [5-8]. By analogy with 
the Riemann zeta function [9,10] and the Selberg zeta function from the theory of geodesic 
motion on surfaces of constant negative curvature [ 11,121, the unitarity of quantum evolution 
1131 and the general properties of the spectral determinant [14,15] suggest a functional 
equation which could be put to good use [ 16-18]. Studies of quantizations of Poincare maps 
[13,19] and scattering systems [20] have been very elucidating theoretically: they suggest 
that convergence and the functional relation arise from the fact that in a bounded phase 
space Planck’s constant introduces a natural smallest volume and the phase space should 
be divided into a finite number of cells of this volume. Bogomolny [13,19] achieves this 
reduction through a semiclassical approximation and Doron and Smilansky 1201 through the 
omission of closed scattering channels. In none of the previous studies in bounded systems 
could these properties be unambigously demonstrated for the semiclassial trace formula. 

To be able to study the behaviour of semiclassical expansions most clearly and 
independently from approximations on the quantum side, we turn here to a study of quantized 
maps on compact phase spaces. Then the quantization procedure automatically demands a 
finite unitary matrix for the time evolution. Specifically, we study Baker’s map since its 
classical mechanics is well understood and can be mapped onto a complete shift on two 
symbols so that the prerequisites for cycle expansion are also satisfied. We can draw here 
on the extensive studies of the quantum and semiclassical mechanics of Baker’s map by 
Balas,  Saraceno and Voros [21-241; for the quantum map we use the symmetry-preserving 
quantization of Saraceno [22]. 

In the next section we present a summary of previous work, and our results using the 
primitive and an improved semiclassical expansion. We close with a discussion in section 3. 
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2. Baker's map 

2.1. &act results 

We briefly recapitulate the main features of Baker's map as needed here. The classical map 
acts on the unit square [0, I] x [0,1] and maps points (q, p )  according to 

B Eckhardt and F Hade 

q '=2q (modl) 

PI = (P + [2q1)/2 

where [XI denotes the largest integer 6 x .  There exists a one-to-one mapping of all 
trajectories onto symbol sequences of 0 ' s  and 1's. depending on the itineraries of a point 
lying to the left (when the symbol 0 is assigned) or to the right (the symbol then being 1) 
of the line x = 1, the line of discontinuity. Periodic orbits are given by periodic symbol 
strings. They are all unstable, with stability exponent n In 2, if n is the period (i.e. the largest 
eigenvalue of the linearization around the orbit is 2"). For the semiclassical calculation one 
also needs the action associated with a trajectory 1231 

V 7  

2" - 1 
s, = - (mod I)  

for a cycle of period n. The integers U and 7 are obtained from the symbol string (ij, . . . , i n ]  
when considered as a binary representation of a number 

Since the dimension of the Hilbert space and thus the inverse of Planck's constant is integer, 
one can take S modulo 1. This also ensures that points for which the symbolic codings 
differ by only one cyclic permutation have the same actions. 

Since the quantized map is represented by a finite unitary matrix U of dimension N ,  
eigenvalues are given by the inverses of zeros of the polynominal 

N zN(z) = det(l - zU) = C a k z  k . 
k=O 

(4) 

(Of course, for actual numerical calculations one would diagonalize the matrix and not 
search for zeros of the polynominal. We use it here only to stress the similarity to the 
semiclassical approach.) Because of unitarity, the coefficients satisfy [13,19] a; = aN-xeio 
with e'@ = ( - l ) N  det U, a property commonly known as self-inversiveness. 

2.2. Semiclassical approximation 

A semiclassical expression for Z(z) (distinguished from the exact one by the index 'sc') 
may be obtained by noting the semiclassical trace formula 

(tr U"),, = Ape'SP'h 
PeFixb) 

(5 )  
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in which the sum extends over all points P periodic after n iterations with action S p  and 
weight A p  = 2"/*/(2" - 1) and the relation det A4 = exp(trlnM), whereby 

Planck's constant can take on values h = 1/2nN, where N is the dimension of the unitary 
evolution operator. Since the quantum map takes on a particularly simple form for even N, 
only such values will be considered here. 

Note that there is no a priori reason for the semiclassical expression (6) to end at the 
finite order N as does the exact quantum determinant (4). When expanded, the coefficients 
a?) contain complicated groupings of all traces trU" for 1 < n < k [25-271. For these 
coefficients to vanish, it would be necessary for there to be strong correlations between the 
long and short trajectories-and indeed it has been argued that these exist in connection 
with the cycle expansion f5.71. Thus, a first test of the validity of semiclassical theory will 
be the study of the behaviour of the coefficients as a function of N ,  i.e. Planck's constant. 

Figure 1 shows the absolute values of the coefficients lap)l as a function of n for 
different values of the dimension of the phase space N .  One notes fluctuations around 
some value of order one [28], followed by a rapid drop. Thus the polynominal effectively 
has a finite degree. As an estimate of the degree of the polynominal, one can take the index 
beyond which the coefficients stay below 1. This critical index seems to be N + 3 rather 
than N as expected from the quantum propagator which has dimension N .  

The case N = 0 (corresponding to h = 03) is unphysical but useful to check the 
calculations. Then the actions drop out of the trace formula (5)  and the sums over the 
eigenvalues can be evaluated using the Euler product formula 

m 

j=O 

- 
E 
d 
M 
0 

- 
3 

0 2 4 6 8 10 12 
n 

Figure 1. Absolute values of the coefficients of the semiclassical characteristic polynominal(5) 
plotted against n for different dimension N of the quantum Hilbert space on a semilogarithmic 
scale. 
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clearly showing the faster than exponential decay of the coefficients with k for sufficiently 
large values; note, however, that the coefficients first rise before submitting to the decay. As 
figure 1 shows, the decline of the coefficients is faster than exponential even for non-zero 
N .  

The next quantity one might like to study is the self-inversiveness [29]. But since the 
relevant coefficients are not uniquely singled out (semiclassically, that is), this makes little 
sense. The eigenvalues computed from the semiclassical polynominal do converge with 
increasing n but are scattered throughout the plane without any immediate relationship with 
the exact eigenvalues. 

2.3. Improwd semiclassical approximation 

In fact, as noted by Voros and Saracen0 1241, the stationary phase approximation, which 
is the central semiclassical approximation, fails rather badly for Baker's map, presumably 
because of the discontinuities inherent in the map. Taking this partially into account [30], 
one can derive a correction factor to the weights of periodic orbits in (S), i.e. 

@Un), = ApeZRiSpNRp(n, N )  (9) 
P€Fix(n) 

with R = 1 unless 2" divides N .  in which case 
N 2" - 1 

N Rp(n ,  N )  = - exp(-2ni(2" - I)(n - $ - M q ) ( m  - f - M p ) / N )  (10) 
",m=l 

where (4. p )  are the position and momentum coordinates of the point P and M = N j 2 " .  
This correction mainly affects points near the boundary along the lines of discontinuity. 
Note that this 'semiquantum' approximation in many cases yields better results than the 
semiclassical one. 

1 

0 

-3 

-4 

Fiyre 2. As figure I ,  but for Ole mefficients of the semiquantum polynomind 
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Because of the requirement that the corrections apply only if 2" divides N ,  for a given 
N only a few traces are effected. Thus, one can write 

Z q z )  = p ) ( z ) e P d z )  = C a $ 9 ) z n  (11) 
n 

where P M ( z )  is a polynominal in z of degree M = N / 2 " .  For the calculations, the whole 
expression is again expanded in a power series in z and mncated at the highest power n for 
which all periodic orbits are available. Thus this correction does not change the asymptotic 
decay of the coefficients. Actually, as shown in figure 2, it acts so as to cause this decay 
to set in earlier, roughly n w  n = N ,  as required by the quantum map. 

Table 1. Coefficients of the semiclassical, semiquantum and exact polynominal for N = 6. The 
first coefficient for n = 0 always equals I. The exact expansion terminates at n = N = 6. 

n a,!"' a. 

1 2.8284 + iO.OW0 -0.8214 + i1.4880 -0.8214 + i1.4880 
2 2.6667 + iO.OW0 -2.1031 - i1.2222 -1.5396 - i1.2222 
3 0.4587 -i0.3506 2.37G9 -12.3819 1.7778-i1.7778 
4 -3,2910 t i0.3278 1.6943 t 12.2250 1.2222+il.5396 
5 2.3546 t i0.5898 -2.6007 + i1.3373 -1.4880 + i0.8214 

(ull d'"" 

6 0.8769 - i0.8832 -0.3495 - i1.9930 0.0000 - i1.0000 
7 -2.7923 - i0.0456 0.9781 - i0.0176 
8 2.3253 + i1.2160 -0.1207 + i0.6126 
9 -0.7140- i1.3858 -0.1928+ iO.0212 
I O  -0.2144+ i0.5936 0.0665 - i0.0865 
I1 0.1754-iO.03M 0.0644-iO.0156 
12 -0.0151 - i0.0318 0.0107-iO.0007 

Table 2. Eigenvalues of the quantized map for N = 6 as computed from various approximations. 
AU eigenvalues are given in a polar representation rev; for the exact ones in the last column 
only the angle is shown since r = I .  The first two columns give the zerm as computed from 
the semiclassical expression (5)  and the semiquantum expression (9). respectively. All periodic 
orbits up to period 13 were used. The resulting polynominal of degree 13 has seven additional 
roots, which depend sensitively on the truncation; they all lie inside the unit circle. The three 
closest to the unit circle an listed as well. In the next to last column the semiclassical data for 
t i  U. V U 2  and @ U 3  were combined with the exact determinant detU = -i and a functional 
equation to arrive at a self-inversive p o l p o m i ~ l  of degree 6. 

Semiclassical Semiquantum Functional equation E ~ f  
r v r v (P v 
1.002 2.858 1.003 2.857 1.003 3.114 2.836 
0.915 0.492 0.918 0.491 0.901 0.235 0.461 
1.021 0.002 1.019 -0.001 1.112 0.222 0.101 
1.121 -1.008 1.123 -1.010 0.996 -0.837 -1.001 
0.910 -1.316 0.913 -1.329 1.003 -1.407 -1.367 
1.031 -2.735 1.030 -2.733 0.997 -2.898 -2.602 

0.798 -0.013 0.829 -0.024 
0.650 0.545 0.611 0.716 
0.616 0.929 0.539 -2.559 
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The coefficients obtained from this expansion are slightly closer to being self-inverse, 
but again it is not satisfied exactly. In table 1 we list the coefficients for N = 6, where 
the corrections from equation (9) have been applied to the fixed points at n = I only. In 
table 2 we list the eigenvalues as found.by four different methods: first from the primitive 
semiclassical approximation (3, second from the semiquantum approximation (9), third 
from a combination of the semiquantum approximation for the first N / 2  coefficients with the 
exact determinant through the functional equation and, finally, from an exact diagonalization 
of the matrix. In the first two cases, one also has additional zeros since the higher-order 
coefficients do not vanish. The data show that the best results are achieved for a combination 
of the semiclassical traces with the functional equation. 

3. Conclusions 

The calculations for Baker's map have unambiguously shown that long orbits are correlated 
with short orbits in such a way that the coefficients of the determinant (5) decay for n larger 
than N ,  the inverse of Planck's constant [5,7]. This decay is faster than exponential and 
thus faster than for two-degree-of-freedom systems where the asymptotic behaviour of the 
semiclassical expression is dominated by a pole 181. 

The point after which this decay sets in is larger than N in the semiclassical case, but 
this can be improved by including corrections to the stationary phase approximation. Then 
the coefficients are self-inverse and the eigenvalues approach the unit circle. There remains 
a rather large discrepancy between the effort that one has to put into the semiclassical 
calculation and the accuracy of the results one obtains. It is clear that N essentially 
independent quantum phases require N numbers as input, which, together with the functional 
equation, means that all (complex) traces up to N / 2  have to be determined. Thus roughly 
ZNIZt'/N orbits have to be computed in this example. 

One objection one may raise to the present calculation is that Planck's constant has not 
been small enough, that one has not reached the semiclassical limit proper. However, one 
might hope that this would affect the accuracy of the results only and not the qualitative 
properties of the expansion such as convergence, self-inversiveness and the confinement 
of the eigenphases to the unit circle. Calculations by F M Dittes (private communication) 
using Bogomolny's transfer operator approach 1131 suggest that these properties emerge 
asymptotically as N -+ 00. This might then justify imposing the functional equation 
[lo, 131 or self-inversiveness on the coefficients. This reduces the maximal period required 
to N I 2  and also improves the estimates for the eigenvalues. 
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